
Graphical User Interfaces for gdb
Summary (no quick start this time)
This document explains how to use Emacs as a graphical front end for gdb to debug the
ManalinkEh.dll. More on gdb and how to use it is discussed in a separate paper.

As gdb comes without a graphical user interface (so-called GUI; there is a built-in one but it doesn’t
work under Windows) this paper shows a few alternatives and the one that works given out not-so-
standard setting consisting of ManalinkEh.dll (“the dll”) and Magic.exe (“the exe”).

I assume you have gdb (as part of MinGW64) installed and that you can call it from the command
prompt (PATH environment variable is set accordingly).

Why do I need a graphical user interface?
Actually you don’t need one as gdb can be used with the command line interface. Occasionally it is
helpful to see local variables or a longer piece of code at the same time without switching windows
etc. so having a GUI makes sense. Besides, it allows you to use the mouse to some extent.

Which GUI should I use?
As with the debuggers I tried a couple (if you consult the Internet you find several recommen-
dations) and stuck with what worked. Which was not that much unfortunately. Most of the time I
couldn’t load the dll separately and set breakpoints as most GUIs seem to assume that you always
debug an exe and take it from there.
As last time let me outline what didn‘t work or what I didn't try to save you the effort to try it
yourself. Feel free to skip this section and forward to „Emacs“if you are not interested. If you want
to try out the alternatives and make progress I would welcome your feedback.

gdbtui

The good news is that gdb has a built-in GUI based on ncurses. The bad news is that it is not
available under Windows and you must jump through several hoops to get something that barely
works. I want something easier to set up.

Eclipse CDT

Eclipse is an Integrated Development Environment (IDE) similar to Visual Studio. Its stand-alone
debugger CDT can be downloaded here: https://www.eclipse.org/cdt/downloads.php. Unpack it, put
it into your Program Files (x86) or Program Files folder (the former for the 32-bit version, the latter
for the 64-bit version). Before running it the first time you must install the latest version of the Java
Development Kit (JDK), the usual Java Runtime Environment (JRE) won’t do. Make sure you use a
32-bit version of Eclipse with a 32-bit version of JDK or 64-bit for both. In case you get an error
message when starting Eclipse (double-click on cdtdebug.exe) you probably must adjust the ini file
as shown here: https://javahungry.blogspot.com/2018/10/solved-java-started-returned-exit-code-13-
error-eclipse.html. Sounds like a ton of work but is actually quite easy. The issue is that after
starting CDT it asks which executable you want to debug… So no way to break into the dll and
when an error occurs it shows you the right function but without source code. Nice, but doesn’t
help.

https://www.eclipse.org/cdt/downloads.php
https://javahungry.blogspot.com/2018/10/solved-java-started-returned-exit-code-13-error-eclipse.html
https://javahungry.blogspot.com/2018/10/solved-java-started-returned-exit-code-13-error-eclipse.html

gdbgui

A stand-alone GUI for gdb that uses your browser as a front-end. You can download an executable
here: https://github.com/cs01/gdbgui/releases (I assume you don’t want to set up Python to run it
from there). Make sure to adjust the firewall settings under Control Panel-Windows Defender
Firewall and add gdbgui to the list of permitted programs (otherwise you can start it but your
browser won’t show anything as the communication gets blocked). The GUI looks nice, but alas, I
didn’t find a way to debug the dll separately from the exe. Besides that I miss the auto-complete
feature when pressing TAB (TAB is used differently in a browser).

Emacs

Emacs is an Operating System that doubles as an editor. No, I’m kidding but Emacs can do a lot of
things beyond what a common editor can. Among other things it can run gdb and do basically
everything I want. You can download it from https://www.gnu.org/software/emacs/download.html
or directly from the FTP server (https://ftp.gnu.org/gnu/emacs/windows/). Take the latest version
(emacs-26 at the time of writing) and pick either the 32-bit version emacs-26.3-i686.zip or the 64-
bit version emacs-26.3-x86_64.zip. If you are in doubt use the 32-bit version. Unpack it, put it into
your Program Files (x86) or Program Files folder (the former for the 32-bit version, the latter for
the 64-bit version). Double-click on bin/runemacs.exe to start it.

Like gdb Emacs has a ton of functions and you might easily get lost. A cheat sheet to get you started
is here: http://www.rgrjr.com/emacs/emacs_cheat.html.

By convention C-<key> denotes the Control (Ctrl) key plus <key>. M-<key> denotes the Alt key
plus <key>. So C-x C-c means press Control and keep it, then press x and c. This ends Emacs. The
Escape key serves as alternative M (Alt) key. If you need to quit a command press C-g instead.

Once you started it go to the Options menu and check “Use CUA keys”. This ensures you can use
C-x, C-c, C-v and C-z as usual (Emacs has another convention for cut, copy, paste and undo which
might otherwise drive you crazy). Afterwards click Options-Save Options. This creates a
configuration file with name .emacs in the folder %USERNAME%\AppData\Roaming (under
Windows 10, in case you still have an older version see
https://www.gnu.org/software/emacs/manual/html_node/emacs/Windows-HOME.html).

Under Options-Customize Emacs-Custom Themes you find some colour themes in case you don’t
like the current theme. Mine is tango-dark.

Before continuing look for the .emacs file and open it with an editor (you can use Emacs if you
want) or take mine and copy it inside the folder (mine contains the code below plus the Annex). The
contents should look like this (note the cua-base and tango-dark settings):

(custom-set-variables
 ;; custom-set-variables was added by Custom.
 ;; If you edit it by hand, you could mess it up, so be careful.
 ;; Your init file should contain only one such instance.
 ;; If there is more than one, they won't work right.
 '(cua-mode t nil (cua-base))
 '(custom-enabled-themes (quote (tango-dark))))
(custom-set-faces
 ;; custom-set-faces was added by Custom.

https://www.gnu.org/software/emacs/manual/html_node/emacs/Windows-HOME.html
http://www.rgrjr.com/emacs/emacs_cheat.html
https://ftp.gnu.org/gnu/emacs/windows/
https://www.gnu.org/software/emacs/download.html
https://github.com/cs01/gdbgui/releases

 ;; If you edit it by hand, you could mess it up, so be careful.
 ;; Your init file should contain only one such instance.
 ;; If there is more than one, they won't work right.
)

Add the code in Annex 1 at the end of the file and save it. This makes sure you have a nicer look
very soon. Alternatively you can skip that and use gdb-many-windows instead (will be explained in
a second). I liked the option in Annex 1 better.

Now restart Emacs. You can start gdb (and generally execute a bunch of commands) with M-x gdb.
Delete the wish.exe. Your Emacs window should look like this:

Press Enter and you get something like this:

Alternatively you can use M-x gdb-many-windows for an alternative split of windows. The
functions will be the same, I liked the proportions of this one better. Note that this script deactivates
gdb-many-windows. If you want it back just delete the section in your .emacs file. If you want to
make gdb-many-windows persistent use M-x customize. This opens up the Emacs config options
which you can search for GDB.

The left upper frame shows the Welcome screen. You can see the buffer name “*GNU Emacs*” in
the status line at the bottom. Program code will be shown in the frame.

The left lower frame shows input and output of the debugged program as the buffer name
input/output of indicates. In our case there won’t be much to see here as the exe usually doesn’t
print anything.

Going to the right side and starting at the top you see the buffer *breakpoints of* with an overview
of all breakpoints currently set.

Next is the buffer “stack frames of*. This shows the order of function calls with the current function
at the top.

Next come the *locals of*, i.e. the local variables of the current scope.

Last is the *gud*, the so-called Grand Unified Debugger. The in- and output here is precisely what
you get when starting gdb from the command prompt but you can use the editor’s capabilities like
scrolling back, copying, re-using a previous command and much more.

As you have to go through the frames once in a while always using the mouse and clicking can be
tedious. Add the code in Annex 2 to your .emacs file to use C-<left arrow> and C-<right arrow> to
cycle through the frames.

A sample debug session with Emacs
Let’s run the same example as in “Debugging the DLL with gdb”. Say your exe resides in

F:\Program files (x86)\Manalink\Manalink_Unstable

Then enter the following commands the gud frame:

• cd f:

• cd Program files (x86)

• cd Manalink

• cd Manalink_Unstable or alternatively cd Manalink /Manalink_Unstable for the last two
(note the use of „/“ to separate folders as per Unix convention)

• file ManalinkEh.dll

• symbol-file ManalinkEh.dbg

• exec-file Magic.exe

• break card_arcbound_ravager

• Your output should look like this:

The breakpoint we just set is shown in the upper left frame. Now we can run the exe and wait until
an Arcbound Ravager shows up somewhere.

In the upper left frame you see the code which was loaded automatically. There is a little red dot
indicating the breakpoint which is a bit hard to see right now. The stack frame buffer tells us that
this function has been called by call_card_fn_impl, which in turn has been called by call_card_fn
and so on until we end up in unknown territory, probably the exe.

Lets move to the next line using the next command inside the gud or by clicking on the appropriate
symbol under the menu bar.

Much better. The little arrow indicates which line of code will be executed next. From here on you
can do the same things as already outlined in “Debugging the DLL with gdb”. Let’s stop here with
the kill command and either quit gdb with the quit command or Emacs either through File-Quit or
C-x C-c (in this case Emacs recognizes that the gdb process is still running and asks you whether
you really want to exit).

Some tips
Look at the menu bar and the icon bar. Depending on the context both might change and provide
you commands that fit the current frame.

Use C-h C-h for the built-in help function.

If you want to quit a command press C-g.

To create a new file use find or shorter C-x C-f.

To save a file use save or shorter C-x C-s, to save as C-x C-w.

Searching works easiest through incremental search (search as you type) with C-s for forward
incremental search and C-r for backward incremental search. If you found the expression, but not at
the right place (e.g. when searching for “card”) press C-s or C-r again to move to the next
occurrence. Pressing the Enter key after C-s or C-r brings you to the non-incremental search where
you enter the search string, then press Enter to search the next occurrence.

Call Dired (C-x d) for an explorer like interface to browse files, directories and much more like
finding files, comparing directories and much more.

If you mark something with the mouse (press left button and move the mouse pointer) the marked
section gets copied into a buffer. Use the middle mouse button for pasting (as an alternative to C-c
C-v as this uses a different buffer)

Need a break? Try M-x tetris.

Keyboard shortcuts for the debugger
Here you find some frequently used keyboard shortcuts for quick reference.

These commands are available both in the GUD interaction buffer (bottom of the right window
half) and globally, but with different key bindings. The keys starting with C-c are available only in
the GUD interaction buffer, while those starting with C-x C-a are available globally.

• C-x C-a C-b: Set a breakpoint on the source line that point is on.
• C-c C-s or C-x C-a C-s: Execute the next single line of code (step). If the line contains a

function call, execution stops after entering the called function.
• C-c C-n or C-x C-a C-n: Execute the next single line of code, stepping across function calls

without stopping inside the functions (next).
• C-c C-p or C-x C-a C-p: Evaluate the expression at point (print). If Emacs does not print the

exact expression that you want, mark it as a region first.
• C-c C-r or C-x C-a C-r: Continue execution without specifying any stopping point. The

program will run until it hits a breakpoint, terminates, or gets a signal that the debugger is
checking for (cont).

• C-c C-d or C-x C-a C-d: Delete the breakpoint(s) on the current source line. If you use this
command in the GUD interaction buffer, it applies to the line where the program last
stopped.

Finally, some documentation...
Emacs is one hell of an editor and it is easy to get lost. The commands above should get you started,
but to use it to the full extent possible you need to look at the documentation. Here are some cheat
sheets, a shorter tutorial and the full-blown documentation:

• Emacs cheat sheet: http://www.rgrjr.com/emacs/emacs_cheat.html

• Emacs tutorial: https://www.emacswiki.org/emacs/EmacsTutorial

• Emacs manual: https://www.gnu.org/software/emacs/manual/html_node/emacs/index.html

• Gdb graphical interface (within the Emacs manual):
https://www.gnu.org/software/emacs/manual/html_node/emacs/GDB-Graphical-
Interface.html#GDB-Graphical-Interface

• Using GDB under GNU Emacs:
https://sourceware.org/gdb/onlinedocs/gdb/Emacs.html#Emacs

• GUD commands (within the Emacs manual):
https://www.gnu.org/software/emacs/manual/html_node/emacs/Commands-of-GUD.html

• Emacs amusements(within the Emacs manual):
https://www.gnu.org/software/emacs/manual/html_node/emacs/Amusements.html

https://www.gnu.org/software/emacs/manual/html_node/emacs/Amusements.html
https://www.gnu.org/software/emacs/manual/html_node/emacs/Commands-of-GUD.html
https://sourceware.org/gdb/onlinedocs/gdb/Emacs.html#Emacs
https://www.gnu.org/software/emacs/manual/html_node/emacs/GDB-Graphical-Interface.html#GDB-Graphical-Interface
https://www.gnu.org/software/emacs/manual/html_node/emacs/GDB-Graphical-Interface.html#GDB-Graphical-Interface
https://www.gnu.org/software/emacs/manual/html_node/emacs/index.html
https://www.emacswiki.org/emacs/EmacsTutorial
http://www.rgrjr.com/emacs/emacs_cheat.html

Open issues:
I don’t know how to remove “wish.exe” from the command line when calling gdb the first time.

Annex 1 (a nice debugging layout):
Code for the .emacs file:

;; Fancy gdb layout
;; from https://stackoverflow.com/questions/3860028/customizing-emacs-gdb

(setq gdb-many-windows nil)

(defun set-gdb-layout(&optional c-buffer)
 (if (not c-buffer)
 (setq c-buffer (window-buffer (selected-window)))) ;; save current buffer

 ;; from http://stackoverflow.com/q/39762833/846686
 (set-window-dedicated-p (selected-window) nil) ;; unset dedicate state if needed
 (switch-to-buffer gud-comint-buffer)
 (delete-other-windows) ;; clean all

 (let* (
 (w-source (selected-window)) ;; left top
 (w-gdb (split-window w-source nil 'right)) ;; right bottom
 (w-locals (split-window w-gdb nil 'above)) ;; right middle bottom
 (w-stack (split-window w-locals nil 'above)) ;; right middle top
 (w-breakpoints (split-window w-stack nil 'above)) ;; right top
 (w-io (split-window w-source (floor(* 0.9 (window-body-height)))
 'below)) ;; left bottom
)
 (set-window-buffer w-io (gdb-get-buffer-create 'gdb-inferior-io))
 (set-window-dedicated-p w-io t)
 (set-window-buffer w-breakpoints (gdb-get-buffer-create 'gdb-breakpoints-buffer))
 (set-window-dedicated-p w-breakpoints t)
 (set-window-buffer w-locals (gdb-get-buffer-create 'gdb-locals-buffer))
 (set-window-dedicated-p w-locals t)
 (set-window-buffer w-stack (gdb-get-buffer-create 'gdb-stack-buffer))
 (set-window-dedicated-p w-stack t)

 (set-window-buffer w-gdb gud-comint-buffer)

 (select-window w-source)
 (set-window-buffer w-source c-buffer)
))
(defadvice gdb (around args activate)
 "Change the way to gdb works."
 (setq global-config-editing (current-window-configuration)) ;; to restore: (set-window-
configuration c-editing)

 (let (
 (c-buffer (window-buffer (selected-window))) ;; save current buffer
)
 ad-do-it
 (set-gdb-layout c-buffer))
)
(defadvice gdb-reset (around args activate)
 "Change the way to gdb exit."
 ad-do-it
 (set-window-configuration global-config-editing))

Annex 2 (cycling through the frames):
Code for the .emacs file:

;; Set c-<left> and c-<right> to cycle through gud frames
(global-set-key (kbd "C-<right>") 'next-multiframe-window)
(global-set-key (kbd "C-<left>") 'previous-multiframe-window)

	Summary (no quick start this time)
	Why do I need a graphical user interface?
	Which GUI should I use?
	gdbtui
	Eclipse CDT
	gdbgui
	Emacs

	A sample debug session with Emacs
	Some tips
	Keyboard shortcuts for the debugger
	Finally, some documentation...
	Open issues:
	Annex 1 (a nice debugging layout):
	Annex 2 (cycling through the frames):

